

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 17 (2006) 161-166

Tetrahedron: Asymmetry

Asymmetric π -allylic etherification of cycloalkenyl esters with phenols in water using a resin-supported chiral palladium complex

Yasuhiro Uozumi* and Masahiro Kimura

Institute for Molecular Science (IMS), CREST, The Graduate University for Advanced Studies, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan

> Received 15 November 2005; accepted 25 November 2005 Available online 9 January 2006

Abstract—Catalytic asymmetric etherification of cycloalkenyl esters with phenolic nucleophiles was achieved in water as the sole reaction medium under heterogeneous conditions by using 2 mol% palladium of a PS-PEG resin-supported palladium–imidazo-indolephosphine complex to give optically active aryl(cycloalkenyl) ethers with up to 94% ee. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Catalytic asymmetric functionalization of carbon frameworks, such as palladium-catalyzed asymmetric π -allylic substitution, constitutes one of the most exciting challenges in modern synthetic chemistry today.¹ Aqueousand heterogeneous-switching of a given organic transformation is rapidly gaining importance for its ability to provide safe, green, and high-throughput chemical processes.^{2,3} We have previously reported the heterogeneous aquacatalytic chiral process with catalytic asymmetric π -allylic alkylation and amination of cycloalkenyl esters using a palladium catalyst coordinated with a novel optically active ligand, (3R,9aS)-(2aryl-3-(2-diphenylphosphino)phenyl)tetrahydro-1H-imidazo[1,5-a]indole-1-one,⁴ anchored onto an amphiphilic polystyrene-poly(ethylene glycol) copolymer (PS-PEG) resin.⁵ As part of our ongoing efforts to develop a wide utility of this system,⁶ we decided to examine π -allylic etherification of cycloalkenyl esters. A vast amount of research has been devoted to the asymmetric π -allylic substitution of acyclic esters (e.g., 1,3-diphenylpropenyl esters) with carbon and nitrogen nucleophiles. However, the well-developed research on catalytic asymmetric substitution of cyclic substrates⁷ with oxygen nucleophiles has been limited to isolated reports.⁸⁻¹⁰ We herein report, the heterogeneous aquacatalytic asymmetric

0957-4166/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.11.026

etherification of cycloalkenyl esters with phenolic nucleophiles, which is catalyzed by the PS–PEG resin-supported palladium–imidazoindolephosphine complex to give optically active aryl(cycloalkenyl) ethers in up to 94% ee (Scheme 1). The resulting aryl(cycloalkenyl) ethers underwent a Claisen rearrangement to give

Scheme 1.

^{*} Corresponding author. E-mail: uo@ims.ac.jp

cycloalkenylarenes, where the chiral C–O bond catalytically generated was readily converted to the corresponding C–C bond with high stereochemical integrity.

2. Results and discussion

The reaction of methyl cyclohexenylcarbonate rac-1B $(X = CH_2)$ and 1.0 equiv of 4-methoxyphenol 2a was carried out in the presence of an amphiphilic polystyrene–poly(ethylene glycol) copolymer $(P\hat{S}-PE\hat{G})^{11,12}$ resin-supported palladium complex 4 (2 mol % Pd) and K₂CO₃ (1 mol equiv) in water at 25 °C with shaking for 12 h to give 3-(4-methoxyphenoxy)cyclohexene 3Ba. Analytically pure 3Ba was isolated by silica gel chromatography in 89% yield with an (S)-configuration as determined by the specific rotation $\{[\alpha]_D^{25} = -102.5\}$ (c 1.3, dichloromethane). Lit. for (S)-3Ba of 97% ee: $[\alpha]_{\rm D}^{25} = -129.1$ (c 2.0, dichloromethane)⁹}. The enantiomeric purity of 3Ba was determined by HPLC analysis with a chiral stationary phase column (Chiralcel AD, 2-propanol/hexane = 1/300) to be 86% ee. The results obtained for the asymmetric etherification of various cycloalkenylcarbonates 1A-E with phenols 2a-2c are summarized in Table 1. Cyclopentenyl carbonate 1A also reacted with 2a under similar reaction conditions to give cyclopentenyl 4-methoxyphenyl ether 3Aa in 84% ee (entry 1). Cyclohexenyl carbonate 1B $(X = CH_2)$ underwent etherification with 4-benzyloxyand 2-benzyloxyphenol **2b** and **2c** under similar reaction conditions to give the corresponding cyclohexenyl aryl ethers **3Bb** (92% yield, 84% ee; entry 5) and **3Bc** (80%) yield, 86% ee; entry 6). The reaction using cycloheptenyl carbonate 1C ($X = CH_2CH_2$) gave the cycloheptenyl aryl ethers, 3Ca, 3Cb, and 3Cc, in 92% ee, 89% ee, and 93% ee, respectively (entries 7-9). The enantioselectivity increased as the steric bulk of the substituent X

Table 1. Asymmetric etherification of cycloalkenyl esters in water catalyzed by polymeric catalyst 4^{a}

Entry	Allylic ester	Phenol	Product	Yield ^b (%)	%ee ^c
1	1A	2a	3Aa	80	84
2	1B	2a	3Ba	89	86
3		(1st reuse)		95	86
4		(2nd reuse)		97	86
5		2b	3Bb	92	84
6		2c	3Bc	80	86
7	1C	2a	3Ca	90	92
8		2b	3Cb	94	89
9		2c	3Cc	90	93
10	1D	2a	3Da	93	93
11		2b	3Db	93	93
12		2c	3Dc	88	94
13	1E	2a	3Ea	80	94
14		2b	3Eb	72	94
15		2c	3Ec	62	92

^a All reactions were carried out at 25 °C for 12 h in water under a nitrogen atmosphere. The ratio of cycloalkenyl ester (mol)/ArOH (mol)/catalyst (Pd equiv)/base (mol)/H₂O (L) = 1.0/1.0/0.02/1.0/1.0.

^b Isolated yield by silica gel column chromatography.

increased. Thus, by using the racemic cis-5-carbomethoxy-2-cyclohexenyl methyl carbonate 1D (X = CHCOOMe), 4-methoxyphenyl ether **3Da**, 4-benzyloxyphenyl ether **3Db**, and 2-benzyloxyphenyl ether **3Dc** were obtained in 93% ee (entry 10), 93% ee (entry 11), and 94% ee (entry 12), respectively, while the reaction of 1B, which lacks the carbomethoxy substituent at the 5-position, with phenols 2a-2c resulted in lower enantioselectivity ranging from 84% to 86% ee (entries 2–6). The exclusive formation of cycloalkenyl ethers 3D with a cis-configuration from the *cis*-allylic ester **1D** revealed that the π allylic etherification proceeds via a double-inversion pathway (stereoinversive π -allylpalladium formation and stereoinversive nucleophilic attack with a phenol)¹³ in water under the present conditions. The catalytic asymmetric introduction of oxygen functionalities onto a piperidine framework also took place with high stereoselectivity. Tetrahydropyridyl carbonate 1E reacted with phenols 2a-2c under similar conditions to afford phenoxypiperidines **3Ea-3Ec** with 92-94% enantiomeric excesses (entries 13-15). Recycling experiments were examined for etherification of cyclohexenyl carbonate **1B** (entries 2–4). After the first use of the polymeric chiral palladium catalyst (Table 1, run 2) to give 86% ee of the aryl cyclohexenyl ether 3Ba, the recovered catalyst beads were subsequently reused twice and exhibited stable catalytic activity (entries 3 and 4).

The synthetic utility of the optically active aryl cycloalkenyl ethers is demonstrated by the Claisen rearrangement to form 2-arylcycloalkenes. Preliminary results are shown in Scheme 2. Thus, the Claisen rearrangement of methoxyphenyl ethers (S)-**3Ba** (86% ee) and (S)-**3Ca** (92% ee) took place in emulsive aqueous conditions at 150 °C for 72 h to give 83% ee of the 2-arylcyclohexene **5** and 90% ee of 2-arylcycloheptene **6**, respectively, with high transfer of chirality.

3. Conclusion

In conclusion, the asymmetric allylic etherification of cycloalkenyl esters with phenolic nucleophiles was achieved in up to 94% ee in water under heterogeneous conditions by use of the recyclable amphiphilic PS–PEG resin-supported palladium–imidazoindolephosphine complex to give the aryl cycloalkenyl ethers, which were readily convertible to the 3-arylcycloalkenes via the

^c Determined by HPLC analysis with use of a chiral stationary phase column.

163

Claisen rearrangement. The π -allylic etherification and the Claisen rearrangement were carried out in water without any organic solvents to meet green chemical requirements.

4. Experimental

4.1. General

All manipulations were carried out under a nitrogen atmosphere. Nitrogen gas was dried by passage through P₂O₅. NMR spectra were recorded on a JEOL JNM-AL400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C), JEOL JNM-LA500 spectrometer (500 MHz for ¹H and 126 MHz for ¹³C), or JEOL JNM-A500 spectrometer (500 MHz for ¹H and 126 MHz for ¹³C). All NMR spectra were recorded in chloroform-D at 25 °C unless otherwise noted. HPLC analysis was performed on a JASCO PU-1580 liquid chromatograph system. GC-MS analysis was performed on an HP 6890 Series Gas Chromatograph and a 5973 Network Mass Selective Detector (YOKOGAWA ANALYTI-CAL SYSTEM). FAB mass spectra were recorded on a JEOL JMS-777V spectrometer; 3-nitrobenzyl alcohol was used as the matrix. Optical rotations were measured on a JASCO P-1020 polarimeter. The agitation of the reaction mixture containing resin-supported catalysts was performed on a Wrist-action shaker (Burrel Scientific, Inc.) or a Peti-Syzer (HiPep Laboratories).

4.2. General procedure for the asymmetric allylic etherification in water

4.2.1. (S)-cyclohex-2-enyl 4'-methoxyphenyl ether 3Ba. A typical procedure was given for the reaction of cyclohexenyl carbonate 1B with 4-methoxyphenol 2a in the presence of 4 to give (S)-cyclohex-2-enyl 4'-methoxyphenyl ether **3Ba**. A mixture of cyclohexenyl carbonate **1B** (31 mg, 0.2 mmol), 4-methoxyphenol **2a** (25 mg, 0.2 mmol), 4 (14 mg, 0.004 mmol Pd), potassium carbonate (28 mg, 0.2 mmol) and H₂O (0.2 mL) was shaken at 25 °C for 12 h. The reaction mixture was filtered and the resin beads rinsed three times with ethyl acetate. The combined filtrate and washings were dried over Na₂SO₄. After removal of solvent, the residual oil was chromatographed on silica gel to give **3Ba** (37 mg) in 87% yield; $[\alpha]_D^{25} = -102.5$ (c 1.3, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 6.87 (d, J = 9.3 Hz, 2H), 6.81 (d, J = 9.3 Hz, 2H), 5.94 (m, 1H), 5.85 (dm, J = 10.0 Hz, 1H), 4.67 (br, 1H), 3.77 (s, 3H), 1.98 (m, 2H), 1.86 (m, 3H), 1.61 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 153.8, 151.7, 131.8, 126.6, 117.3, 114.6, 72.0, 55.7, 28.4, 25.2, 19.1. MS (EI): m/z (rel%) 204 (8, M⁺), 124 (bp), 109 (68), 79 (46). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel AD, eluent; n-hexane/2-propanol = 300/1, flow rate; 0.5 mL/min, retention times; major isomer 18.5 min and minor 20.8 min) to be 86% ee. The absolute configuration was determined by comparison of the specific rotation to the literature value;^{9b} $[\alpha]_{\rm D}^{25} = -129.1$ (c 2.0, dichloromethane) for

enantiomerically enriched **3Ba** (97% ee). CAS registry number: (*S*)-175735-28-1.

4.2.2. Cyclopent-2-enyl 4'-methoxyphenyl ether 3Aa. Yield 80%; $[\alpha]_D^{25} = -68.0$ (*c* 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 6.82–6.87 (m, 4H), 6.12 (m, 1H), 5.95 (m, 1H), 5.25 (m, 1H), 3.77 (s, 3H), 2.58 (m, 1H), 2.33 (m, 2H), 1.95 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 153.7, 152.4, 137.0, 129.0, 116.6, 114.7, 83.7, 55.7, 31.3, 30.1. MS (EI): *m*/*z* (rel%) 190 (4, M⁺), 124 (bp), 109 (67). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OJ, eluent; *n*-hexane/2-propanol = 300/1, flow rate; 1.0 mL/min, retention times; major isomer 23.7 min and minor 27.8 min) to be 84% ee. CAS registry number: 200552-03-0.

4.2.3. 4'-Benzyloxyphenyl cyclohex-2-enyl ether 3Bb. Yield 92%; $[\alpha]_{D}^{25} = -78.2$ (c 1.2, CH₂Cl₂); ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 7.41 \text{ (d, } J = 7.3 \text{ Hz}, 2\text{H}), 7.35 \text{ (t,}$ J = 7.3 Hz, 2H), 7.30 (d, J = 7.3 Hz, 1H), 6.85–6.90 (m, 4H), 5.93 (dt, J = 3.7, 10.4 Hz, 1H), 5.84 (dd, J = 2.4, 10.4 Hz, 1H), 5.00 (s, 2H), 4.66 (br, 1H), 2.11 (m, 1H), 2.00 (m, 1H), 1.85 (m, 3H), 1.61 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 153.1, 152.1, 137.3, 131.9, 128.5, 127.9, 127.5, 126.6, 117.3, 115.8, 71.9, 70.7, 28.3, 25.1, 19.0. MS (EI): m/z (rel%) 280 (4, M⁺), 200 (29), 91 (bp). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel AD, eluent; n-hexane/2-propanol = 300/1, flow rate; 1.0 mL/min, retention times; major isomer 15.4 min and minor 19.2 min) to be 84% ee. Anal. Calcd for C19H20O2: C, 81.40; H, 7.19. Found: C, 81.59; H, 7.13.

4.2.4. 2'-Benzyloxyphenyl cyclohex-2-enyl ether 3Bc. Yield 80%; $[\alpha]_{D}^{25} = -81.0$ (c 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 7.43 (d, J = 7.3 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 6.88–7.01 (m, 4H), 5.92 (m, 2H), 5.12 (s, 2H), 4.76 (m, 1H), 2.13 (m, 1H), 2.00 (m, 1H), 1.90 (m, 3H), 1.62 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 150.1, 148.3, 137.5, 131.7, 128.4, 127.7, 127.3, 126.9, 122.0, 121.7, 118.3, 115.7, 73.2, 71.3, 28.6, 25.2, 19.1. MS (EI): m/z (rel%) 280 (1, M^+), 200 (16), 91 (bp). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; n-hexane/2-propanol = 300/1, flow rate; 1.0 mL/min, retention times; major isomer 32.0 min and minor 35.1 min) to be 86% ee. Anal. Calcd for C₁₉H₂₀O₂: C, 81.40; H, 7.19. Found: C, 81.23; H, 7.19.

4.2.5. Cyclohept-2-enyl 4'-methoxyphenyl ether 3Ca. Yield 90%; $[\alpha]_D^{24} = +3.4$ (*c* 1.2, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 6.82 (s, 4H), 5.79–5.88 (m, 2H), 4.78 (br d, J = 10.3 Hz, 1H), 3.76 (s, 3H), 2.23 (m, 1H), 2.01–2.13 (m, 3H), 1.61–1.76 (m, 3H), 1.39 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 153.8, 151.8, 135.9, 130.8, 116.9, 114.7, 78.1, 55.7, 33.1, 28.6, 27.5, 26.6. MS (EI): m/z (rel%) 218 (4, M⁺), 124 (bp), 109 (38). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; *n*-hexane/2-propanol = 300/1, flow rate; 0.5 mL/min, retention times; major isomer 17.4 min and minor 15.3 min) to be 92% ee. The absolute configuration was determined by comparison of the specific rotation to the literature;^{9b} $[\alpha]_D^{25} = +3.4$ (*c* 2.0, CH₂Cl₂) for enantiomerically enriched **3Ca** (92% ee). CAS registry number: (*S*)-200552-09-6.

4.2.6. 4'-Benzyloxyphenyl cyclohept-2-enyl ether 3Cb. Yield 94%; $[\alpha]_D^{25} = +7.4$ (*c* 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 7.29–7.42 (m, 5H), 6.88 (d, J = 9.3 Hz, 2H), 6.80 (d, J = 9.3 Hz, 2H), 5.78–5.88 (m, 2H), 5.00 (s, 2H), 4.78 (br d, J = 10.5 Hz, 1H), 2.22 (m, 1H), 2.00–2.12 (m, 3H), 1.60–1.76 (m, 3H), 1.39 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 152.9, 152.0, 137.3, 135.8, 130.8, 128.5, 127.9, 127.5, 116.8, 115.8, 78.0, 70.7, 33.1, 28.5, 27.5, 26.5. MS (EI): m/z (rel%) 294 (2, M⁺), 200 (21), 91 (bp). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OJ, eluent; *n*-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 29.2 min and minor 22.9 min) to be 89% ee. Anal. Calcd for C₂₀H₂₂O₂: C, 81.60; H, 7.53. Found: C, 81.70; H, 7.50.

4.2.7. 2'-Benzyloxyphenyl cyclohept-2-enyl ether 3Cc. Yield 90%; $[\alpha]_D^{25} = -8.1$ (c 1.7, CH_2Cl_2); ¹H NMR (CDCl₃, 500 MHz): δ 7.44 (d, J = 7.3 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.29 (dm, J = 7.3 Hz, 1H), 6.84–6.94 (m, 4H), 5.81-5.92 (m, 2H), 5.12 (s, 2H), 4.90 (br d, J = 10.3 Hz, 1H), 2.23 (m, 1H), 2.01–2.11 (m, 3H), 1.83 (m, 1H), 1.59–1.71 (m, 2H), 1.40 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 149.5, 148.2, 137.6, 135.9, 130.6, 128.4, 127.7, 127.3, 121.7, 121.4, 116.6, 115.8, 79.0, 71.4, 33.2, 28.6, 27.4, 26.6. MS (EI): m/z (rel%) 292 (1, $[M-H_2]^+$), 200 (17), 91 (bp). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel AD, eluent; n-hexane/2-propanol = 300/1, flow rate; 1.0 mL/min, retention times; major isomer 12.0 min and minor 13.6 min) to be 93% ee. Anal. Calcd for C₂₀H₂₂O₂: C, 81.60; H, 7.53. Found: C, 81.39; H, 7.45.

4.2.8. cis-(5'-Methoxycarbonyl)cyclohex-2'-enyl 4-methoxyphenyl ether 3Da. Yield 93%; $[\alpha]_{D}^{25} = +5.9$ (c 1.2, CH_2Cl_2); ¹H NMR (CDCl₃, 500 MHz): δ 6.86 (d, J = 9.0 Hz, 2H), 6.81 (d, J = 9.0 Hz, 2H), 5.86 (m, 2H), 4.80 (m, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 2.69 (dddd, J = 2.7, 6.8, 9.5, 12.5 Hz, 1H), 2.43 (ddd, J = 2.7, 5.6,12.5 Hz, 1H), 2.33 (m, 2H), 1.83 (ddd, J = 12.5, 12.5, 9.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 174.8, 154.3, 151.5, 128.5, 127.7, 117.6, 114.7, 73.5, 55.7, 51.9, 38.1, 31.3, 27.6. MS (FAB+): m/z (rel%) 262 (29, M^+), 139 (bp), 124 (91), 79 (32). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; n-hexane/2-propanol = 300/1, flow rate; 1.0 mL/min, retention times; major isomer 30.7 min and minor 37.5 min) to be 93% ee. Anal. Calcd for $C_{15}H_{18}O_4$: C, 68.68; H, 6.92. Found: C, 68.62; H, 6.75.

4.2.9. *cis*-(5'-Methoxycarbonyl)cyclohex-2'-enyl 4-benzyloxyphenyl ether 3Db. Yield 93%; $[\alpha]_D^{25} = +7.1$ (*c* 1.3, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 7.30–7.43 (m, 5H), 6.89 (d, J = 9.3 Hz, 2H), 6.85 (d, J = 9.3 Hz, 2H), 5.85 (m, 2H), 5.01 (s, 2H), 4.80 (m, 1H), 3.69 (s, 3H), 2.68 (dddd, J = 2.9, 6.6, 9.5, 12.7 Hz, 1H), 2.42 (ddd, J = 12.7, 5.6, 2.9 Hz, 1H), 2.33 (m, 2H), 1.80 (ddd, J = 12.7, 12.7, 9.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 174.7, 153.4, 151.7, 137.3, 128.54, 128.50, 127.9, 127.6, 127.5, 117.5, 115.9, 73.4, 70.6, 51.8, 38.1, 31.3, 27.5. MS (EI): m/z (rel%) 338 (16, M⁺), 306 (19), 215 (22), 187 (36), 91 (bp). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; *n*-hexane/2-propanol = 20/1, flow rate; 1.0 mL/min, retention times; major isomer 14.2 min and minor 17.9 min) to be 93% ee. Anal. Calcd for C₂₁H₂₂O₄: C, 74.54; H, 6.55. Found: C, 74.75; H, 6.50.

4.2.10. cis-(5'-Methoxycarbonyl)cyclohex-2'-enyl 2-benzyloxyphenyl ether 3Dc. Yield 88%; $[\alpha]_D^{25} = +1.0$ (c 1.2, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 7.28–7.44 (m, 5H), 6.88-7.00 (m, 4H), 5.89 (dm, J = 10.3 Hz, 1H), 5.83 (m, 1H), 5.12 (s, 2H), 4.89 (m, 1H), 3.69 (s, 3H), 2.65 (dddd, J = 2.7, 6.6, 9.8, 12.7 Hz, 1H), 2.45 (dm, J = 12.7 Hz, 1H), 2.32 (m, 2H), 1.87 (ddd, J = 12.7, 12.7, 9.8 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 174.8, 150.1, 147.8, 137.3, 128.4, 128.10, 128.09, 127.7, 127.3, 122.5, 121.6, 118.7, 115.5, 74.9, 71.2, 51.8, 38.3, 31.5, 27.6. MS (FAB+): m/z (rel%) 338 (5, M⁺), 200 (29), 139 (bp), 91 (80), 79 (29). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OJ-H, eluent; *n*-hexane/2-propanol = 20/1, flow rate; 1.0 mL/min, retention times; major isomer 21.9 min and minor 24.4 min) to be 94% ee. Anal. Calcd for C₂₁H₂₂O₄: C, 74.54; H, 6.55. Found: C, 74.51; H, 6.52.

4.2.11. tert-Butyl 3-(4'-methoxyphenoxy)-1,2,3,6-tetrahydropyridine-1-carboxylate 3Ea. Yield 80%; $[\alpha]_{D}^{25} =$ -45.7 (c 0.8, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz, -10 °C, mixture of rotamers in a ratio of 1:1.5): δ 6.83-6.94 (m, 4H), 5.89-6.02 (m, 2H), 4.69 (m, 1H), 3.84-4.09 and 3.30-3.34 (m, 3H), 3.78 and 3.79 (s, 3H), 3.64–3.72 (m, 1H), 1.40 and 1.48 (s, 9H); ¹³C NMR (CDCl₃, 126 MHz, -10 °C, mixture of rotamer at a ratio of 1:1.5): δ 154.7, 154.6, 154.2, 153.9, 151.1, 151.0, 129.3, 127.8, 125.9, 124.9, 117.7, 116.9, 114.5, 80.1, 80.0, 70.3, 69.2, 55.65, 55.58, 44.2, 43.5, 43.4, 42.8, 28.3, 28.2 (there is one missing resonance of an aromatic carbon of the minor rotamer, which should overlap with the other aromatic resonance). MS (EI): m/z (rel%) 305 (10, M⁺), 232 (10), 176 (20), 124 (bp), 80 (59), 57 (63). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; n-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 8.6 min and minor 10.8 min) to be 94% ee. Anal. Calcd for C₁₇H₂₃NO₄: C, 66.86; H, 7.59; N, 4.59. Found: C, 66.59; H, 7.52; N, 4.49.

4.2.12. *tert*-Butyl 3-(4'-benzyloxyphenoxy)-1,2,3,6-tetrahydropyridine-1-carboxylate 3Eb. Yield 72%; $[\alpha]_D^{25} = -34.7$ (*c* 0.7, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz, -10 °C, mixture of rotamers in a ratio of 1:1.2): δ 7.33–7.46 (m, 5H), 6.88–6.94 (m, 3H), 5.89–6.02 (m, 2H), 5.02 and 5.04 (s, 2H), 4.68 (m, 1H), 3.80–4.09 and 3.26–3.33 (m, 4H), 3.63–3.72 (m, 1H), 1.39 and 1.48 (s, 9H); ¹³C NMR (CDCl₃, 126 MHz, -10 °C, mixture of rotamers in a ratio of 1:1.2): δ 154.7, 154.6, 153.4, 153.1, 151.3, 151.2, 136.92, 136.87, 129.3, 128.6, 127.9, 127.7, 127.53, 127.49, 125.9, 124.9, 117.6, 116.8, 115.56, 115.53, 80.1, 79.9, 70.32, 70.29, 70.2, 69.1, 44.2, 43.5, 43.4, 42.8, 28.3, 28.2 (there are two missing resonances of aromatic carbons of the minor rotamer which should overlap with the other aromatic resonances). MS (FAB+): m/z (rel%) 381 (39, M⁺), 326 (20), 200 (16), 149 (44), 126 (96), 91 (bp), 82 (68), 57 (78). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; *n*-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 20.2 min and minor 17.8 min) to be 94% ee. Anal. Calcd for C₂₃H₂₇NO₄: C, 72.42; H, 7.13; N, 3.67. Found: C, 72.34; H, 7.12; N, 3.67.

4.2.13. tert-Butyl 3-(2'-benzyloxyphenoxy)-1,2,3,6-tetrahydropyridine-1-carboxylate 3Ec. Yield 62%; $[\alpha]_{D}^{25} =$ -45.1 (c 0.7, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz, -10 °C, mixture of rotamers in a ratio of 1:1) δ 7.32– 7.46 (m, 5H), 6.91–7.10 (m, 4H), 5.87–6.06 (m, 2H), 5.09-5.16 (m, 2H), 4.76 (m, 1H), 3.44-4.03 (m, 4H), 1.45 and 1.48 (s, 9H); 13 C NMR (CDCl₃, 126 MHz, -10 °C, mixture of rotamers in a ratio of 1:1): δ 154.72, 154.70, 149.8, 149.6, 147.1, 146.9, 137.1, 137.0, 128.7, 128.48, 128.45, 127.8, 127.7, 127.6, 127.1, 126.1, 125.2, 123.0, 122.6, 121.5, 121.2, 119.1, 118.1, 114.6, 80.0 (overlapped), 71.3, 70.6 (overlapped), 70.5, 44.5, 43.5, 43.4, 42.8, 28.33, 28.30 (there are two missing resonances of aromatic carbons of the minor rotamer which should overlap with the other aromatic resonances). MS (FAB+): m/z (rel%) 382 (6, $[M+H]^+$), 326 (15), 126 (61), 91 (72), 57 (bp), 43 (68). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel OD-H, eluent; n-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 18.1 min and minor 28.8 min) to be 92% ee. Anal. Calcd for $C_{23}H_{27}NO_4$: C, 72.42; H, 7.13; N, 3.67. Found: C, 72.13; H, 7.20; N, 3.74.

4.3. General procedure for the Claisen rearrangement in water

4.3.1. (*R*)-2'-(Cyclohex-2-enyl)-4'-methoxyphenol **5.** A typical procedure was given for the reaction of (*S*)-cyclohex-2-enyl 4'-methoxyphenyl ether **3Ba** to give (*R*)-2'-(cyclohex-2-enyl)-4'-methoxyphenol**5**. A mixture of **3Ba** (30 mg, 0.15 mmol) and H₂O (2.0 mL) was stirred at 150 °C in a sealed tube for 72 h. The reactant was extracted with ethyl acetate and dried over Na₂SO₄. After removal of solvent, the residual oil was chromatographed on silica gel to give **5** (25 mg) in 83% yield; $[\alpha]_D^{25} = +95.0$ (*c* 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz): δ 6.72 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 6.65 (dd, J = 8.5, 2.9 Hz, 1H), 6.03 (m, 1H), 5.79 (dd, J = 2.0, 10.0 Hz, 1H), 5.01 (s, 1H), 3.75 (s, 3H), 3.54 (m, 1H), 2.12 (m, 2H), 2.01 (m, 1H), 1.80 (m, 1H), 1.65 (m, 2H); ¹³C NMR (CDCl₃,

126 MHz): δ 153.5, 147.9, 132.2, 130.8, 129.4, 116.6, 115.3, 112.1, 55.7, 38.0, 29.8, 25.0, 21.3. MS (EI): m/z (rel%) 204 (bp, M⁺), 161 (38). The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel AD, eluent; *n*-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 30.3 min and minor 36.3 min) to be 83% ee. The absolute configuration was determined by comparison of the special rotation to the literature;^{9b} [α]_D²⁵ = +109.7 (*c* 2.0, CH₂Cl₂) for enantiomerically enriched **5** (97% ee). CAS registry number: (*R*)-200552-23-4.

4.3.2. (*R*)-2'-(Cyclohept-2-enyl)-4'-methoxyphenol 6. Yield 60%; $[\alpha]_{D}^{25} = +35.5$ (c 1.1, CH₂Cl₂); ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 6.74 \text{ (d, } J = 3.1 \text{ Hz}, 1\text{H}), 6.72 \text{ (d,}$ J = 8.5 Hz, 1H), 6.63 (dd, J = 3.1 Hz, J = 8.5 Hz, 1H), 5.94 (m, 1H), 5.71 (br d, J = 12.2 Hz, 1H), 4.70 (s, 1H), 3.76 (s, 3H), 3.73 (m, 1H), 2.30 (m 1H), 2.23 (m, 1H), 1.97 (m, 1H), 1.81 (m, 3H), 1.65 (m, 1H), 1.49 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 153.8, 146.9, 135.4, 134.1, 133.4, 116.5, 114.2, 111.8, 55.7, 41.9, 34.1, 30.0, 28.8, 27.1. MS (EI): m/z (rel%) 218 (bp, M^+), 137 (68). The enantiometric excess was determined by HPLC analysis using a chiral stationary phase column (Chiralcel AD, eluent; *n*-hexane/2-propanol = 98/2, flow rate; 1.0 mL/min, retention times; major isomer 32.7 min and minor 35.0 min) to be 90% ee. The absolute configuration was determined by comparison of the specific rotation to the literature;^{9b} $[\alpha]_D^{25} = +31.0$ (c 1.6, CH_2Cl_2) for enantiomerically enriched 6 (96% ee). CAS registry number: (R)-200552-24-5.

Acknowledgements

This work was supported by the CREST program, sponsored by the JST. We also thank the JSPS (GRANT-in-AID for Scientific Research, No. 15205015) and the MEXT (Scientific Research on Priority Areas, No. 420), for partial financial support of this work.

References

- For a recent review on asymmetric π-allylic substitution, see: (a) Acemoglu, L.; Williams, J. M. J. In *Handbook of* Organopalladium Chemistry 1945; Negishi, E., Ed.; Wiley: New York, 2002; (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
- For reviews on aqueous-switching, see: (a) Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley-VCH: New York, 1997; (b) Grieco, P. A. Organic Synthesis in Water; Kluwer Academic: Dordrecht, 1997; (c) Herrmann, W. A.; Kohlpaintner, C. W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1524; (d) Lindström, U. M. Chem. Rev. 2002, 102, 2751.
- For reviews on heterogeneous-switching, see: (a) Bailey, D. C.; Langer, S. H. Chem. Rev. 1981, 81, 109; (b) Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis 1997, 1217; (c) Shuttleworth, S. J.; Allin, S. M.; Wilson, R. D.; Nasturica, D. Synthesis 2000, 1035; (d) Dörwald, F. Z. Organic Synthesis on Solid Phase; Wiley-VCH: Weinheim, 2000; (e) Leadbeater, N. E.; Marco, M. Chem. Rev. 2002,

102, 3217; (f) McNamara, C. A.; Dixon, M. J.; Bradley, M. *Chem. Rev.* **2002**, *102*, 3275; (g) *Chiral Catalyst Immobilization and Recycling*; De Vos, D. E., Vankelecom, I. F. J., Jacobs, P. A., Eds.; Wiley-VCH: Weinheim, 2000; (h) Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. *Chem. Rev.* **2002**, *102*, 3385; (i) Uozumi, Y. *Top. Curr. Chem.* **2004**, *242*, 77.

- (a) Uozumi, Y.; Shibatomi, K. J. Am. Chem. Soc. 2001, 123, 2919; (b) Shibatomi, K.; Uozumi, Y. Tetrahedron: Asymmetry 2002, 13, 1769; (c) Uozumi, Y.; Tanaka, H.; Shibatomi, K. Org. Lett. 2004, 6, 281; (d) Nakai, Y.; Uozumi, Y. Org. Lett. 2005, 7, 291.
- For other examples of heterogeneous aquacatalytic chiral processes with PS-PEG resin-supported transition metal complexes, see: (a) Uozumi, Y.; Danjo, H.; Hayashi, T. *Tetrahedron Lett.* **1998**, *39*, 8303; (b) Hocke, H.; Uozumi, Y. *Synlett* **2002**, 2049; (c) Hocke, H.; Uozumi, Y. *Tetrahedron* **2003**, *59*, 619; (d) Hocke, H.; Uozumi, Y. *Tetrahedron* **2004**, *60*, 9297; (e) Otomaru, Y.; Senda, T.; Hayashi, T. Org. Lett. **2004**, *6*, 3357.
- 6. For studies on polymer-supported palladium catalysts from the author's group, see: (a) Uozumi, Y.; Danjo, H.; Hayashi, T. Tetrahedron Lett. 1997, 38, 3557 (n-allylic substitution); (b) Danjo, H.; Tanaka, D.; Hayashi, T.; Uozumi, Y. Tetrahedron 1999, 55, 14341 (π-allylic substitution); (c) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384 (cross-coupling); (d) Uozumi, Y.; Watanabe, T. J. Org. Chem. 1999, 64, 6921 (carbonylation reaction); (e) Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997 (Suzuki-Miyaura coupling); (f) Uozumi, Y.; Kimura, T. Synlett 2002, 2045 (Heck reaction); (g) Uozumi, Y.; Kobayashi, Y. Heterocycles 2003, 59, 71 (Sonogashira reaction); (h) Uozumi, Y.; Nakao, R. Angew. Chem., Int. Ed. Engl. 2003, 42, 194 (aerobic oxidation); (i) Nakao, R.; Rhee, H.; Uozumi, Y. Org. Lett. 2005, 7, 163 (hydrodechlorination).
- For examples of asymmetric π-allylic alkylation and/or amination of cycloalkenyl esters with high stereoselectivity, see: (a) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. **1994**, 116, 4089; (b) Knühl, G.; Sennhenn, P.; Helmchen, G. J. Chem. Soc., Chem. Commun. **1995**, 1845; (c) Kudis, S.; Helmchen, G. Angew. Chem., Int. Ed. **1998**, 37, 3047; (d) Gilbertson, S.; Xie, D. Angew. Chem., Int. Ed. **1999**, 38, 2750; (e) Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagné, M. R. J. Org. Chem. **1999**, 64,

2994; (f) Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagne, M. R. J. Am. Chem. Soc. 2000, 122, 7905; (g) Saitoh, A.; Achiwa, K.; Tanaka, K.; Morimoto, T. J. Org. Chem. 2000, 65, 4227; (h) Hou, D.-R.; Reibenspies, J. H.; Burgess, K. J. Org. Chem. 2001, 66, 206; (i) Hamada, Y.; Sakaguchi, K.; Hara, O. Tetrahedron Lett. 2001, 42, 1297; (j) Xiao, L.; Weissensteiner, W.; Mereiter, K.; Widhalm, M. J. Org. Chem. 2002, 67, 2206; (k) Agarkov, A.; Uffman, E. W.; Gilbertson, S. R. Org. Lett. 2003, 5, 2091; (1) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 9801; (m) Nishimata, T.; Sato, Y.; Mori, M. J. Org. Chem. 2004, 69, 1837; (n) Nemoto, T.; Masuda, T.; Akimoto, Y.; Fukuyama, T.; Hamada, Y. Org. Lett. 2005, 7, 4447; (o) Diéguez, M.; Pamies, O.; Claver, C. J. Org. Chem. 2005, 70, 3363; (p) Pamies, O.; Diégues, M.; Claver, C. J. Am. Chem. Soc. 2005, 127, 3646.

- For asymmetric π-allylic etherification with high stereoselectivity, see: (a) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276 (Pd); (b) López, F.; Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 3426 (Ir); (c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074 (Pd).
- For examples of cycloalkenyl etherification, see: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 11262; (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 815; (c) Tietze, L. F.; Lohmann, J. K.; Stadler, C. Synlett 2004, 1113.
- For asymmetric π-allylic etherification in water, see: (a) Goux, C.; Massacret, M.; Lhoste, P.; Sinou, D. Organometallics 1995, 14, 4585; (b) Iourtchenko, A.; Sinou, D. J. Mol. Catal. A. 1997, 122, 91.
- (a) Bayer, E.; Rapp, W. In Chemistry of Peptides and Proteins; Voelter, W., Bayer, E., Ovchinikov, Y. A., Iwanov, V. T., Eds.; Walter de Gruter: Berlin, 1986; Vol.
 3, p 3; (b) Rapp, W. In Combinatorial Peptide and Nonpeptide Libraries; Jung, G., Ed.; VCH: Weinheim, 1996; p 425; (c) Du, X.; Armstrong, R. W. J. Org. Chem.
 1997, 62, 5678; (d) Gooding, O. W.; Baudert, S.; Deegan, T. L.; Heisler, K.; Labadie, J. W.; Newcomb, W. S.; Porco, J. A., Jr.; Eikeren, P. J. Comb. Chem. 1999, 1, 113.
- 12. DVB (1%) cross-linked, average diameter of polymer beads = $170 \mu m$, palladium loading = 0.28 mmol/g.
- 13. Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. *Tetrahedron Lett.* **1986**, *27*, 191.